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Abstract— Tiny Machine Learning (TinyML) is a rapidly growing field at the intersection of artificial 

intelligence and embedded systems, enabling machine learning (ML) applications on low-power, resource-

constrained devices such as microcontrollers (MCUs). The adoption of TinyML in autonomous robotics, particularly 

for pick-and-place tasks, has the potential to revolutionize warehouse automation. This review paper explores the 

methodologies, tools, applications, and challenges of TinyML-based object detection in autonomous robotic arms 

and compares it with traditional methods relying on cloud computing and high-power GPUs. We discuss key 

advancements in TinyML frameworks and inference engines, highlighting the trade-offs in accuracy, power 

consumption, and real-time performance. Additionally, we analyze the constraints associated with deploying 

TinyML models on microcontrollers such as the ESP32-CAM and compare their efficiency against traditional 

machine learning approaches for robotic arms. Finally, we present potential future research directions in TinyML 

for robotic applications. 
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INTRODUCTION 

      The field of Artificial Intelligence (AI) and Machine Learning (ML) has experienced significant advancements, 

leading to widespread adoption in various industries, including robotics and automation. Traditionally, ML models 

are deployed on powerful computing infrastructures such as cloud servers, edge devices with GPUs/TPUs, and high-

performance computing clusters. These models typically require large computational power, high memory (often in 

gigabytes), and substantial energy consumption, making them infeasible for deployment on low-power, resource-

constrained microcontrollers (MCUs). The increasing demand for real-time, on-device intelligence in autonomous 

mailto:minalthawakar1988@gmail.com
mailto:pranav779895@gmail.com
mailto:golukashyap7517@gmail.com
mailto:borkarsujal13@gmail.com
mailto:krishnambilse122@gmail.com


International Journal for Research Publication and Seminar 

ISSN: 2278-6848  |  Vol. 16  |  Issue 1  |  Jan-Mar  2025  |  Peer Reviewed & Refereed 
 

Special Edition : SPARK 2025 : XXI National Conference on Emerging Technology Trends in Engineering & Project 
Competition 
   

 

2 
 

systems has led to the emergence of Tiny Machine Learning (TinyML), a paradigm shift that enables ML inference 

on low-power microcontrollers. By running ML models on devices like the ESP32-CAM and STM32, TinyML 

eliminates cloud dependency, reducing latency, power consumption, and data transmission costs. 

One of the most promising applications of TinyML is in robotic automation, particularly warehouse logistics, where 

autonomous robotic arms perform pick-and-place tasks. Traditionally, object detection and decision-making in 

robotic systems rely on computationally expensive models such as Convolutional Neural Networks (CNNs) running 

on GPUs, TPUs, or cloud servers. While these models provide high accuracy, they demand significant computational 

power, increasing operational costs and energy consumption. Furthermore, cloud-based ML solutions suffer from 

latency, privacy concerns, and connectivity dependence, making them less suitable for real-time robotic control. 

TinyML provides a promising alternative by enabling real-time, low-power object detection directly on 

microcontrollers like the ESP32-CAM. It utilizes model quantization, neural architecture search (TinyNAS), 

pruning, and lightweight frameworks (TensorFlow Lite Micro, MCUNet, TinyTL) to efficiently deploy deep 

learning models on microcontrollers with extremely limited resources (typically <256KB RAM and 1mW power 

consumption). This makes TinyML particularly attractive for autonomous robotic arms, where fast, low-energy, on-

device decision-making is essential for efficient and scalable warehouse logistics automation. The objective of this 

review paper is to analyze the current advancements, tools, and applications of TinyML for object detection in 

robotic arms. Furthermore, the paper provides a detailed comparison between TinyML-based and traditional ML-

based approaches, highlighting trade-offs in terms of accuracy, power consumption, latency, and computational 

efficiency. Finally, the paper discusses key challenges and future directions in deploying TinyML-powered robotic 

systems, with a focus on improving model efficiency, reducing inference time, and optimizing energy consumption 

for real-world applications. 

 

Fig1: Tiny ML representation 

II. TRADITIONAL ML AND TINY ML IN ROBOTIC AUTOMATION 

Traditional ML and deep learning techniques have been widely used in autonomous robotics, including object 

detection, path planning, and decision-making. These approaches often rely on powerful hardware such as GPUs 

(e.g., NVIDIA Jetson), TPUs, and cloud-based AI servers, which can handle computationally expensive models like 

convolutional neural networks (CNNs) and deep reinforcement learning algorithms. These methods typically require 

significant memory, high power consumption, and stable network connectivity for offloading computations to the 

cloud. 
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In contrast, TinyML offers an alternative approach by enabling ML models to run locally on microcontrollers (e.g., 

ESP32-CAM, STM32, ARM Cortex-M) with extremely low power consumption (typically <1mW). This paradigm 

shift eliminates cloud dependency, reducing latency, increasing data privacy, and making robotic systems more 

autonomous. In warehouse robotics, TinyML-based object detection allows a robotic arm to identify and classify 

objects in real-time while operating on low-power embedded devices. However, compared to traditional ML 

approaches, TinyML faces challenges such as lower accuracy, limited model complexity, and slower inference speed 

due to the constraints of microcontroller hardware. 

A key comparison between TinyML-based object detection and traditional ML-based robotic automation is 

necessary to evaluate the advantages and trade-offs of each approach. Traditional ML models, such as YOLO, 

MobileNet, and SSD, demand high memory (>1GB RAM) and computational power (multi-core CPUs or GPUs 

running at GHz speeds). These models offer higher accuracy but require internet connectivity to communicate with 

cloud-based servers, leading to latency, security risks, and high energy consumption. This makes them less practical 

for real-time, battery-operated robotic systems. 

In comparison, TinyML-based object detection models are optimized using techniques such as quantization (e.g., 

INT8, INT4), TinyNAS (neural architecture search), and MCUNet (model optimization for MCUs). These allow 

object detection models to run locally on devices like ESP32-CAM, STM32, and Raspberry Pi Pico, significantly 

reducing power consumption. However, this compression often leads to trade-offs in accuracy, affecting object 

detection performance. 

One of the key applications of TinyML in robotics is object detection and control in autonomous systems. Traditional 

computer vision models, such as YOLO (You Only Look Once), SSD (Single Shot Multibox Detector), and Faster 

R-CNN, require extensive computational resources, making them impractical for deployment on microcontrollers. 

Instead, TinyML-based solutions leverage optimized neural 

architectures, enabling inference on low-power devices such as ESP32-CAM and STM32. 

Recent research has introduced model compression techniques, neural architecture search (NAS), and quantization 

to adapt ML models for microcontrollers. Several frameworks, such as MCUNet, TinyNAS, TensorFlow Lite 

Micro (TF-Lite Micro), CMSIS-NN, and TinyTL, have been designed specifically for constrained environments. 

These frameworks optimize inference speed, power efficiency, and memory usage while maintaining acceptable 

accuracy levels. 

Key advancements in TinyML for robotics include: 

1. MCUNet & TinyNAS: Efficient neural architecture search (NAS) techniques that generate models optimized for 

microcontrollers. 

2. TinyTL & TinyOL: Methods for on-device transfer learning and online learning, enabling adaptation to new 

objects in dynamic environments. 

3. Edge Impulse & TF-Lite Micro: Low-power inference frameworks that allow ML models to be deployed on 

ESP32, STM32, and ARM Cortex-M microcontrollers. 

4. Performance comparison of hardware: Studies comparing inference speeds on ESP32-CAM, Raspberry Pi, and 

Jetson Nano, revealing trade-offs between accuracy, latency, and energy efficiency. 
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Fig2: The advancement of computing technology over time 

While traditional ML methods provide superior accuracy, their reliance on high-performance processors, cloud-

based computation, and continuous connectivity makes them impractical for low-power, real-time applications. In 

contrast, TinyML enables autonomous robotic control with lower power requirements and minimal latency, making 

it an attractive alternative for warehouse automation, industrial robotics, and remote monitoring applications. 

III. CHALLENGES IN TINY ML ROBOTICS 

Despite its advantages, TinyML faces several limitations compared to traditional AI in robotics: 

1. Memory Constraints: TinyML models operate within 256KB–1MB RAM, whereas traditional AI models require 

several gigabytes of RAM. 

2. Computational Cost: TinyML devices run at 100–500MHz, while GPUs operate at GHz speeds, leading to 

performance trade-offs. 

3. Training on MCUs: Unlike traditional ML, which allows continuous model training, TinyML primarily supports 

inference, limiting adaptability. 

4. Model Compression & Accuracy Trade-offs: TinyML relies on quantization (INT8, INT4) and pruning, often 

reducing model accuracy. 

5. Limited Development Frameworks: While traditional ML benefits from robust frameworks like TensorFlow and 

PyTorch, TinyML relies on TF-Lite Micro, Edge Impulse, and MCUNet, which are still evolving. 

IV. FUTURE RESEARCH DIRECTIONS IN TINY ML FOR ROBOTICS 

To enhance TinyML adoption in robotics, future research should focus on several critical areas to address current 

limitations and unlock new capabilities. One of the most pressing challenges is improving neural architecture search 

(NAS) and quantization techniques. Developing high-accuracy, ultra-low-power models through advanced NAS 

approaches will enable TinyML to achieve better performance without sacrificing computational efficiency. 

Additionally, more refined quantization techniques, such as adaptive mixed-precision quantization, could enhance 

model compression without significant loss of accuracy. 

Another crucial research direction is on-device training. Current TinyML frameworks primarily support inference, 

but the ability to perform continuous learning and adaptation directly on microcontrollers would greatly expand their 

usefulness in dynamic environments. Emerging approaches such as TinyTL (Tiny Transfer Learning) and federated 

learning for microcontrollers offer promising avenues for enabling on-device updates while minimizing power 

consumption. 
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Furthermore, hybrid edge-cloud AI systems present an opportunity to balance on-device inference and cloud-assisted 

learning. While TinyML provides real-time, low-power computation, some tasks may require periodic cloud-based 

processing for model refinement or heavier computations. Future research should explore intelligent task allocation 

mechanisms that dynamically distribute workloads between the edge and the cloud to optimize energy efficiency 

and latency. 

Another critical area is energy-efficient hardware accelerators for TinyML. Custom AI hardware designed 

specifically for low-power microcontrollers—such as dedicated AI co-processors, neuromorphic computing 

architectures, and RISC-V-based accelerators—can significantly improve inference speed while reducing power 

consumption. Developing such hardware tailored for TinyML-based robotic applications will be essential for 

achieving higher efficiency and real-time performance. 

Finally, research must focus on expanding TinyML’s application domains within robotics. While current 

implementations are primarily centered on object detection and classification, future advancements should explore 

motion planning, adaptive control, and multi-modal sensor fusion for more complex robotic interactions. Integrating 

TinyML with other low-power sensing technologies such as LiDAR, ultrasonic sensors, and radar could further 

enhance its capabilities in robotic automation. 

V. CONCLUSION 

     TinyML is rapidly transforming robotic automation by enabling real-time, low-power, and efficient object 

detection on microcontrollers. By eliminating reliance on cloud-based AI and high-performance GPUs, TinyML 

provides a cost-effective and energy-efficient solution for deploying machine learning in warehouse logistics, 

industrial robotics, and autonomous pick-and-place systems. 

Despite its advantages, TinyML faces several challenges, including memory constraints, model compression trade-

offs, and limited support for on-device learning. However, recent advancements in neural architecture search (NAS), 

quantization, and hybrid edge-cloud AI are helping to mitigate these limitations and improve the feasibility of 

deploying TinyML-based robotic automation at scale. 

Future research should focus on enhancing model efficiency, developing specialized AI hardware accelerators, and 

expanding Tiny MLs applications in robotics beyond object detection. By addressing these challenges, TinyML will 

continue to bridge the gap between embedded systems and AI, leading to more intelligent, autonomous, and power-

efficient robotic solutions in real-world applications. 

As the field of TinyML evolves, it holds the potential to redefine how AI is integrated into low-power robotics, 

fostering the development of autonomous robotic systems that are faster, smarter, and more sustainable in an 

increasingly AI-driven world. 
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